//############################################################################ //## ## //## Miles Sound System ## //## ## //## API.CPP: FLT module for Band Pass Filter ## //## ## //## 32-bit protected-mode source compatible with MSC 11.0/Watcom 10.6 ## //## ## //## Version 1.00 of 5-Feb-99: Initial ## //## ## //## Author: John Miles, Nick Skrepetos ## //## ## //############################################################################ //## ## //## Copyright (C) RAD Game Tools, Inc. ## //## ## //## Contact RAD Game Tools at 425-893-4300 for technical support. ## //## ## //############################################################################ #include "mss.h" #include "imssapi.h" #define FILTER_NAME "BandPass Filter" // Center Frequency / Width Default #define _FX_CENTER_DEFAULT 2000.0F #define _FX_WIDTH_DEFAULT 400.0F #define _FX_MIX_DEFAULT 1.0F // // Attribute tokens // enum PROP { // // Additional filter attribs (beyond standard RIB PROVIDER_ attributes) // _FX_PROVIDER_FLAGS, _FX_MIX, _FX_BANDPASS_CENTER, _FX_BANDPASS_WIDTH }; // // Driver state descriptor // // One state descriptor is associated with each HDIGDRIVER // struct DRIVERSTATE { HDIGDRIVER dig; }; // // Per-sample filter state descriptor // // One state descriptor is associated with each HSAMPLE // struct SAMPLESTATE { // // Members common to all pipeline filter providers // HSAMPLE sample; // HSAMPLE with which this descriptor is associated DRIVERSTATE FAR *driver; // Driver with which this descriptor is associated // // Members associated with specific filter provider // S32 calculated_rate; F32 fMix; F32 fCenterFreq; F32 fWidth; F32 fXL[ 2 ]; F32 fYL[ 2 ]; F32 fXR[ 2 ]; F32 fYR[ 2 ]; F32 fA[ 3 ]; F32 fB[ 2 ]; }; #include "common.inl" //############################################################################ //# # //# Calculate coefficients and values based on parameter set # //# # //############################################################################ static void FXCalcParams( SAMPLESTATE FAR * SS, S32 playback_rate ) { F32 fRate; F32 fC, fD; // get sample rate fRate = F32(playback_rate); SS->calculated_rate = playback_rate; // calculate coefficients fC = 1.0F / (F32) AIL_tan( F_PI * SS->fWidth / fRate ); fD = 2.0F * (F32) AIL_cos( 2.0F * F_PI * SS->fCenterFreq / fRate ); // calculate coefficients SS->fA[ 0 ] = 1.0F / ( 1.0F + fC ); SS->fA[ 1 ] = 0.0F; SS->fA[ 2 ] = -SS->fA[ 0 ]; // calculate coefficients SS->fB[ 0 ] = -fC * fD * SS->fA[ 0 ]; SS->fB[ 1 ] = ( fC - 1.0F ) * SS->fA[ 0 ]; } static void init_sample( SAMPLESTATE FAR * SS ) { // // Initialize provider-specific members to their default values // // init low pass values SS->fCenterFreq = _FX_CENTER_DEFAULT; SS->fWidth = _FX_WIDTH_DEFAULT; SS->fMix = _FX_MIX_DEFAULT; // reset sample history SS->fXL[ 0 ] = 0.0F; SS->fXL[ 1 ] = 0.0F; SS->fYL[ 0 ] = 0.0F; SS->fYL[ 1 ] = 0.0F; SS->fXR[ 0 ] = 0.0F; SS->fXR[ 1 ] = 0.0F; SS->fYR[ 0 ] = 0.0F; SS->fYR[ 1 ] = 0.0F; // update params FXCalcParams( SS, SS->driver->dig->DMA_rate ); } static void close_sample( SAMPLESTATE FAR * SS ) { } //############################################################################ //# # //# Process sample data # //# # //# Parameters: # //# # //# state is the sample descriptor. You can retrieve the HSAMPLE via # //# the state.sample member, if needed. # //# # //# source_buffer is a pointer to the a stereo or mono 16-bit sample # //# buffer. # //# # //# n_samples is the number of samples (either mono or stereo) to # //# process. # //# # //# dest_buffer is the destination 16-bit sample buffer. # //# # //# dest_playback_rate is the hardware sample rate. Filters must watch # //# for changes in the playback rate and recalculate any dependent # //# parameters. # //# # //# is_stereo says whether the input data is stereo or mono. # //# # //############################################################################ static void AILCALL FLTSMP_sample_process(HSAMPLESTATE state, //) S16 FAR * MSSRESTRICT source_buffer, S16 FAR * MSSRESTRICT dest_buffer, S32 n_samples, S32 dest_playback_rate, S32 is_stereo) { SAMPLESTATE FAR *SSp = (SAMPLESTATE FAR *) state; SAMPLESTATE SS; AIL_memcpy(&SS, SSp, sizeof(SS)); //HSAMPLE S = SS.sample; //DRIVERSTATE FAR *DRV = SS.driver; S32 dwIndex; F32 fInput; F32 fOutL,fOutR; F32 fA0, fA1, fA2, fB0, fB1; // set wet/dry mix F32 fDryOut = 1.0F - SS.fMix; F32 fWetOut = SS.fMix; //fast path if ( fDryOut > 0.999f ) { if ( source_buffer != dest_buffer ) AIL_memcpy( dest_buffer, source_buffer, n_samples * ( is_stereo ? 4 : 2 ) ); return; } if (dest_playback_rate != SS.calculated_rate) { FXCalcParams(&SS, dest_playback_rate); } // get coeffs fA0 = SS.fA[ 0 ]; fA1 = SS.fA[ 1 ]; fA2 = SS.fA[ 2 ]; fB0 = SS.fB[ 0 ]; fB1 = SS.fB[ 1 ]; // check if mono or stereo if ( is_stereo ) { // mix into build buffer for( dwIndex = 0; dwIndex < n_samples; dwIndex++ ) { // get input sample (left) fInput = (F32)(S16)LE_SWAP16(source_buffer); // calculate sample fOutL = fA0 * fInput + fA1 * SS.fXL[ 0 ] + \ fA2 * SS.fXL[ 1 ] - fB0 * SS.fYL[ 0 ] - \ fB1 * SS.fYL[ 1 ]; // save samples in history SS.fXL[ 1 ] = SS.fXL[ 0 ]; SS.fXL[ 0 ] = fInput; SS.fYL[ 1 ] = SS.fYL[ 0 ]; SS.fYL[ 0 ] = fOutL + _FX_DENORMVAL; fOutL = ( fOutL * fWetOut ) + ( fInput * fDryOut ); // get input sample (right) fInput = (F32)(S16)LE_SWAP16_OFS(source_buffer,2); // calculate sample fOutR = fA0 * fInput + fA1 * SS.fXR[ 0 ] + \ fA2 * SS.fXR[ 1 ] - fB0 * SS.fYR[ 0 ] - \ fB1 * SS.fYR[ 1 ]; // save samples in history SS.fXR[ 1 ] = SS.fXR[ 0 ]; SS.fXR[ 0 ] = fInput; SS.fYR[ 1 ] = SS.fYR[ 0 ]; SS.fYR[ 0 ] = fOutR + _FX_DENORMVAL; fOutR = ( fOutR * fWetOut ) + ( fInput * fDryOut ); // write output S32 tmp; WRITE_STEREO_SAMPLE( dest_buffer, fOutL, fOutR, tmp ); source_buffer += 2; } } else { // mix into build buffer for( dwIndex = 0; dwIndex < n_samples; dwIndex++ ) { // get input sample fInput = (F32)(S16)LE_SWAP16(source_buffer); ++source_buffer; // calculate sample fOutL = fA0 * fInput + fA1 * SS.fXL[ 0 ] + \ fA2 * SS.fXL[ 1 ] - fB0 * SS.fYL[ 0 ] - \ fB1 * SS.fYL[ 1 ]; // save samples in history SS.fXL[ 1 ] = SS.fXL[ 0 ]; SS.fXL[ 0 ] = fInput; SS.fYL[ 1 ] = SS.fYL[ 0 ]; SS.fYL[ 0 ] = fOutL + _FX_DENORMVAL; fOutL = ( fOutL * fWetOut ) + ( fInput * fDryOut ); // store output S32 tmp; WRITE_MONO_SAMPLE( dest_buffer, fOutL, tmp ); } } AIL_memcpy(SSp, &SS, sizeof(*SSp)); } //############################################################################ //# # //# Retrieve an FLT sample attribute or preference value by index # //# # //############################################################################ static S32 AILCALL FLTSMP_sample_property(HSAMPLESTATE state, HPROPERTY property, void FAR * before_value, void const FAR * new_value, void FAR * after_value ) { SAMPLESTATE FAR *SS = (SAMPLESTATE FAR *) state; switch ( property ) { case _FX_MIX: if ( before_value ) *(F32 FAR*)before_value = SS->fMix; if ( new_value ) { SS->fMix = *(F32 const FAR*)new_value; // clip to valid range FX_CLIPRANGE( SS->fMix, 0.0F, 1.0F ); } if ( after_value ) *(F32 FAR*)after_value = SS->fMix; return 1; case _FX_BANDPASS_CENTER: if ( before_value ) *(F32 FAR*)before_value = SS->fCenterFreq; if ( new_value ) { SS->fCenterFreq = *(F32 const FAR*)new_value; // clip to valid range FX_CLIPRANGE( SS->fCenterFreq, 20.0F, ((F32) SS->driver->dig->DMA_rate) / 2.0F - 1.0F ); FXCalcParams( SS, SS->calculated_rate); } if ( after_value ) *(F32 FAR*)after_value = SS->fCenterFreq; return 1; case _FX_BANDPASS_WIDTH: if ( before_value ) *(F32 FAR*)before_value = SS->fWidth; if ( new_value ) { SS->fWidth = *(F32 const FAR*)new_value; // clip to valid range FX_CLIPRANGE( SS->fWidth, 20.0F, ((F32) SS->driver->dig->DMA_rate) / 2.0F - 1.0F ); FXCalcParams( SS, SS->calculated_rate); } if ( after_value ) *(F32 FAR*)after_value = SS->fWidth; return 1; } return 0; } extern "C" S32 BandPassMain( HPROVIDER provider_handle, U32 up_down ); extern "C" S32 BandPassMain( HPROVIDER provider_handle, U32 up_down ) { const RIB_INTERFACE_ENTRY FLT1[] = { REG_FN(PROVIDER_property), REG_PR("Name", PROVIDER_NAME, (RIB_DATA_SUBTYPE) (RIB_STRING|RIB_READONLY)), REG_PR("Version", PROVIDER_VERSION, (RIB_DATA_SUBTYPE) (RIB_HEX|RIB_READONLY)), REG_PR("Flags", _FX_PROVIDER_FLAGS, (RIB_DATA_SUBTYPE) (RIB_HEX|RIB_READONLY)), }; const RIB_INTERFACE_ENTRY FLT2[] = { REG_FN(FLT_startup), REG_FN(FLT_error), REG_FN(FLT_shutdown), REG_FN(FLT_open_driver), }; const RIB_INTERFACE_ENTRY FLT3[] = { REG_FN(FLT_close_driver), REG_FN(FLT_premix_process), REG_FN(FLT_postmix_process), }; const RIB_INTERFACE_ENTRY FLTSMP1[] = { REG_FN(FLTSMP_open_sample), REG_FN(FLTSMP_close_sample), REG_FN(FLTSMP_sample_process), REG_FN(FLTSMP_sample_property), }; const RIB_INTERFACE_ENTRY FLTSMP2[] = { REG_PR("Mix", _FX_MIX, RIB_FLOAT), REG_PR("Bandpass Center", _FX_BANDPASS_CENTER, RIB_FLOAT), REG_PR("Bandpass Width", _FX_BANDPASS_WIDTH, RIB_FLOAT), }; if (up_down) { RIB_register(provider_handle, "MSS pipeline filter", FLT1); RIB_register(provider_handle, "MSS pipeline filter", FLT2); RIB_register(provider_handle, "MSS pipeline filter", FLT3); RIB_register(provider_handle, "Pipeline filter sample services", FLTSMP1); RIB_register(provider_handle, "Pipeline filter sample services", FLTSMP2); } else { RIB_unregister_all(provider_handle); } return TRUE; }