//############################################################################ //## ## //## Miles Sound System ## //## ## //## API.CPP: FLT module for Compressor Filter ## //## ## //## 32-bit protected-mode source compatible with MSC 11.0/Watcom 10.6 ## //## ## //## Version 1.00 of 5-Feb-99: Initial ## //## ## //## Author: John Miles, Nick Skrepetos ## //## ## //############################################################################ //## ## //## Copyright (C) RAD Game Tools, Inc. ## //## ## //## Contact RAD Game Tools at 425-893-4300 for technical support. ## //## ## //############################################################################ #include "mss.h" #include "imssapi.h" #define FILTER_NAME "Compressor Filter" // Ratio / Gain Default #define _FX_RATIO_DEFAULT 4.0F #define _FX_GAIN_DEFAULT 1.0F #define _FX_MIX_DEFAULT 1.0F // // Attribute tokens // enum PROP { // // Additional filter attribs (beyond standard RIB PROVIDER_ attributes) // _FX_PROVIDER_FLAGS, _FX_MIX, _FX_COMPRESSOR_RATIO, _FX_COMPRESSOR_GAIN }; // // Driver state descriptor // // One state descriptor is associated with each HDIGDRIVER // struct DRIVERSTATE { HDIGDRIVER dig; }; // // Per-sample filter state descriptor // // One state descriptor is associated with each HSAMPLE // struct SAMPLESTATE { // // Members common to all pipeline filter providers // HSAMPLE sample; // HSAMPLE with which this descriptor is associated DRIVERSTATE FAR *driver; // Driver with which this descriptor is associated // // Members associated with specific filter provider // F32 fMix; F32 fRatio; F32 fGain; F32 fScaleC; F32 fRatioC; }; #include "common.inl" //############################################################################ //# # //# Calculate coefficients and values based on parameter set # //# # //############################################################################ static void FXCalcParams( SAMPLESTATE FAR * SS ) { // compute scale / gain SS->fScaleC = ((32767.0F) / (F32)AIL_log( 1.0F + SS->fRatio )) ; SS->fRatioC = (( 10.0F - SS->fRatio) / 10.0F) / (32768.0F); } static void init_sample( SAMPLESTATE FAR * SS ) { // // Initialize provider-specific members to their default values // // init default values SS->fMix = _FX_MIX_DEFAULT; SS->fRatio = _FX_RATIO_DEFAULT; SS->fGain = _FX_GAIN_DEFAULT; FXCalcParams( SS ); } static void close_sample( SAMPLESTATE FAR * SS ) { } //############################################################################ //# # //# Process sample data # //# # //# Parameters: # //# # //# state is the sample descriptor. You can retrieve the HSAMPLE via # //# the state.sample member, if needed. # //# # //# source_buffer is a pointer to the a stereo or mono 16-bit sample # //# buffer. # //# # //# n_samples is the number of samples (either mono or stereo) to # //# process. # //# # //# dest_buffer is the destination 16-bit sample buffer. # //# # //# dest_playback_rate is the hardware sample rate. Filters must watch # //# for changes in the playback rate and recalculate any dependent # //# parameters. # //# # //# is_stereo says whether the input data is stereo or mono. # //# # //############################################################################ static void AILCALL FLTSMP_sample_process(HSAMPLESTATE state, //) S16 FAR * source_buffer, S16 FAR * dest_buffer, S32 n_samples, S32 dest_playback_rate, S32 is_stereo) { SAMPLESTATE FAR *SS = (SAMPLESTATE FAR *) state; //HSAMPLE S = SS->sample; //DRIVERSTATE FAR *DRV = SS->driver; S32 dwIndex; F32 fInput; F32 fScale; F32 fRatio; F32 fOutL,fOutR; // set wet/dry mix F32 fDryOut = 1.0F - SS->fMix; F32 fWetOut = SS->fMix; //fast path if ( fDryOut > 0.999f ) { if ( source_buffer != dest_buffer ) AIL_memcpy( dest_buffer, source_buffer, n_samples * ( is_stereo ? 4 : 2 ) ); return; } // compute scale / gain fScale = SS->fScaleC; fRatio = SS->fRatioC; // check if mono or stereo if ( is_stereo ) { // mix into build buffer for( dwIndex = 0; dwIndex < n_samples; dwIndex ++ ) { // get input sample (left) fInput = (F32)(S16)LE_SWAP16(source_buffer); // compress sample if ( fInput < 0.0F ) { fOutL = fInput - SS->fGain * ( ( (F32) AIL_log( 1.0F - fInput * fRatio ) * fScale ) + fInput ); } else { fOutL = fInput + SS->fGain * ( ( (F32) AIL_log( 1.0F + fInput * fRatio ) * fScale ) - fInput ); } fOutL = ( fOutL * fWetOut ) + ( fInput * fDryOut ); // get input sample (right) fInput = (F32)(S16)LE_SWAP16_OFS(source_buffer,2); // compress sample if ( fInput < 0.0F ) { fOutR = fInput - SS->fGain * ( ( (F32) AIL_log( 1.0F - fInput * fRatio ) * fScale ) + fInput ); } else { fOutR = fInput + SS->fGain * ( ( (F32) AIL_log( 1.0F + fInput * fRatio ) * fScale ) - fInput ); } fOutR = ( fOutR * fWetOut ) + ( fInput * fDryOut ); S32 tmp; WRITE_STEREO_SAMPLE( dest_buffer, fOutL, fOutR, tmp ); source_buffer += 2; } } else { // mix into build buffer for( dwIndex = 0; dwIndex < n_samples; dwIndex++ ) { // get input sample fInput = (F32)(S16)LE_SWAP16(source_buffer); ++source_buffer; // compress sample if ( fInput < 0.0F ) { fOutL = fInput - SS->fGain * ( ( (F32) AIL_log( 1.0F - fInput * fRatio ) * fScale ) + fInput ); } else { fOutL = fInput + SS->fGain * ( ( (F32) AIL_log( 1.0F + fInput * fRatio ) * fScale ) - fInput ); } fOutL = ( fOutL * fWetOut ) + ( fInput * fDryOut ); // store output S32 tmp; WRITE_MONO_SAMPLE( dest_buffer, fOutL, tmp ); } } } //############################################################################ //# # //# Set sample preference value, returning previous setting # //# # //############################################################################ static S32 AILCALL FLTSMP_sample_property(HSAMPLESTATE state, HPROPERTY property,void FAR * before_value, void const FAR * new_value, void FAR * after_value) { SAMPLESTATE FAR *SS = (SAMPLESTATE FAR *) state; //HSAMPLE S = SS->sample; // determine preference switch (property) { // // Preferences // case _FX_MIX : if ( before_value ) *(F32 FAR*)before_value = SS->fMix; if ( new_value ) { SS->fMix = *(F32 const FAR*)new_value; // clip to valid range FX_CLIPRANGE( SS->fMix, 0.0F, 1.0F ); } if ( after_value ) *(F32 FAR*)after_value = SS->fMix; return 1; case _FX_COMPRESSOR_RATIO : if ( before_value ) *(F32 FAR*)before_value = SS->fRatio; if ( new_value ) { SS->fRatio = *(F32 const FAR*)new_value; // clip to valid range FX_CLIPRANGE( SS->fRatio, 1.0F, 10.0F ); FXCalcParams( SS ); } if ( after_value ) *(F32 FAR*)after_value = SS->fRatio; return 1; case _FX_COMPRESSOR_GAIN : if ( before_value ) *(F32 FAR*)before_value = SS->fGain; if ( new_value ) { SS->fGain = *(F32 const FAR*)new_value; // clip to valid range FX_CLIPRANGE( SS->fGain, 0.0F, 1.0F ); } if ( after_value ) *(F32 FAR*)after_value = SS->fGain; return 1; } return 0; } extern "C" S32 CompressMain( HPROVIDER provider_handle, U32 up_down ); extern "C" S32 CompressMain( HPROVIDER provider_handle, U32 up_down ) { const RIB_INTERFACE_ENTRY FLT1[] = { REG_FN(PROVIDER_property), REG_PR("Name", PROVIDER_NAME, (RIB_DATA_SUBTYPE) (RIB_STRING|RIB_READONLY)), REG_PR("Version", PROVIDER_VERSION, (RIB_DATA_SUBTYPE) (RIB_HEX|RIB_READONLY)), REG_PR("Flags", _FX_PROVIDER_FLAGS, (RIB_DATA_SUBTYPE) (RIB_HEX|RIB_READONLY)), }; const RIB_INTERFACE_ENTRY FLT2[] = { REG_FN(FLT_startup), REG_FN(FLT_error), REG_FN(FLT_shutdown), REG_FN(FLT_open_driver), }; const RIB_INTERFACE_ENTRY FLT3[] = { REG_FN(FLT_close_driver), REG_FN(FLT_premix_process), REG_FN(FLT_postmix_process), }; const RIB_INTERFACE_ENTRY FLTSMP1[] = { REG_FN(FLTSMP_open_sample), REG_FN(FLTSMP_close_sample), REG_FN(FLTSMP_sample_process), REG_FN(FLTSMP_sample_property), }; const RIB_INTERFACE_ENTRY FLTSMP2[] = { REG_PR("Compressor Ratio", _FX_COMPRESSOR_RATIO, RIB_FLOAT), REG_PR("Compressor Mix", _FX_COMPRESSOR_GAIN, RIB_FLOAT), REG_PR("Mix", _FX_MIX, RIB_FLOAT), }; if (up_down) { RIB_register(provider_handle, "MSS pipeline filter", FLT1); RIB_register(provider_handle, "MSS pipeline filter", FLT2); RIB_register(provider_handle, "MSS pipeline filter", FLT3); RIB_register(provider_handle, "Pipeline filter sample services", FLTSMP1); RIB_register(provider_handle, "Pipeline filter sample services", FLTSMP2); } else { RIB_unregister_all(provider_handle); } return TRUE; }