//############################################################################ //## ## //## Miles Sound System ## //## ## //## API.CPP: FLT module for Parametric EQ ## //## ## //## 32-bit protected-mode source compatible with MSC 11.0/Watcom 10.6 ## //## ## //## Version 1.00 of 5-Feb-99: Initial ## //## ## //## Author: John Miles, Nick Skrepetos ## //## ## //############################################################################ //## ## //## Copyright (C) RAD Game Tools, Inc. ## //## ## //## Contact RAD Game Tools at 425-893-4300 for technical support. ## //## ## //############################################################################ #include "mss.h" #include "imssapi.h" #define FILTER_NAME "Parametric EQ Filter" // Parametric EQ Defaults #define _FX_DEFAULT_CENTER 1000.0F #define _FX_DEFAULT_Q 1.0F #define _FX_DEFAULT_GAIN -8.0F #define _FX_MIX_DEFAULT 1.0F // // Attribute tokens // enum PROP { // // Additional filter attribs (beyond standard RIB PROVIDER_ attributes) // _FX_PROVIDER_FLAGS, _FX_MIX, _FX_PARMEQ_CENTER, _FX_PARMEQ_Q, _FX_PARMEQ_GAIN }; // // Driver state descriptor // // One state descriptor is associated with each HDIGDRIVER // struct DRIVERSTATE { // // Members common to all pipeline filter providers // HDIGDRIVER dig; // Driver with which this descriptor is associated }; // // Per-sample filter state descriptor // // One state descriptor is associated with each HSAMPLE // struct SAMPLESTATE { // // Members common to all pipeline filter providers // HSAMPLE sample; // HSAMPLE with which this descriptor is associated DRIVERSTATE FAR *driver; // Driver with which this descriptor is associated // // Members associated with specific filter provider // S32 calculated_rate; F32 fMix; F32 fCenterFreq; F32 fQ; F32 fGain; F32 fA0; F32 fA1; F32 fA2; F32 fB1; F32 fB2; F32 fXL; F32 fXL1; F32 fXL2; F32 fXR; F32 fXR1; F32 fXR2; }; #include "common.inl" //############################################################################ //# # //# Calculate coefficients and values based on parameter set # //# # //############################################################################ static void FXCalcParams( SAMPLESTATE FAR * SS, S32 playback_rate ) { F32 fA, fB, fC, fE; F32 fWn, fWp; F32 fG; // get sample rate F32 fRate = F32(playback_rate); SS->calculated_rate = playback_rate; // get gain fG = SS->fGain / 6.6F; // computer frequency center fWn = 1.0F / ( 2.0F * F_PI * SS->fCenterFreq ); fWp = ( fWn / (F32) AIL_tan( fWn / ( 2.0F * fRate ))); // calculate components fA = ( fWn * fWn * fWp * fWp ); fB = ( 3.0F + fG ) * fWn * fWp * SS->fQ; fC = ( 3.0F - fG ) * fWn * fWp * SS->fQ; fE = 1.0F; // calculcate coefficients SS->fB2 = ( fE - fC + fA ) / ( fA + fC + fE ); SS->fA2 = ( fE - fB + fA ) / ( fA + fC + fE ); SS->fB1 = 2.0F * ( fE - fA ) / ( fA + fC + fE ); SS->fA1 = 2.0F * ( fE - fA ) / ( fA + fC + fE ); SS->fA0 = ( fA + fB + fE ) / ( fA + fC + fE ); } static void init_sample( SAMPLESTATE FAR * SS ) { // // Initialize provider-specific members to their default values // SS->fMix = _FX_MIX_DEFAULT; SS->fCenterFreq = _FX_DEFAULT_CENTER; SS->fQ = _FX_DEFAULT_Q; SS->fGain = _FX_DEFAULT_GAIN; // calculate params FXCalcParams( SS, SS->driver->dig->DMA_rate ); // reset sample history SS->fXL = 0.0F; SS->fXL1 = 0.0F; SS->fXL2 = 0.0F; SS->fXR = 0.0F; SS->fXR1 = 0.0F; SS->fXR2 = 0.0F; } static void close_sample( SAMPLESTATE FAR * SS ) { } //############################################################################ //# # //# Process sample data # //# # //# Parameters: # //# # //# state is the sample descriptor. You can retrieve the HSAMPLE via # //# the state.sample member, if needed. # //# # //# source_buffer is a pointer to the a stereo or mono 16-bit sample # //# buffer. # //# # //# n_samples is the number of samples (either mono or stereo) to # //# process. # //# # //# dest_buffer is the destination 16-bit sample buffer. # //# # //# dest_playback_rate is the hardware sample rate. Filters must watch # //# for changes in the playback rate and recalculate any dependent # //# parameters. # //# # //# is_stereo says whether the input data is stereo or mono. # //# # //############################################################################ static void AILCALL FLTSMP_sample_process(HSAMPLESTATE state, //) S16 FAR * MSSRESTRICT source_buffer, S16 FAR * MSSRESTRICT dest_buffer, S32 n_samples, S32 dest_playback_rate, S32 is_stereo) { SAMPLESTATE FAR *SSp = (SAMPLESTATE FAR *) state; SAMPLESTATE SS; AIL_memcpy(&SS, SSp, sizeof(SS)); //HSAMPLE S = SS.sample; //DRIVERSTATE FAR *DRV = SS.driver; S32 dwIndex; F32 fInput; F32 fOutL,fOutR; // set wet/dry mix F32 fDryOut = 1.0F - SS.fMix; F32 fWetOut = SS.fMix; //fast path if ( fDryOut > 0.999f ) { if ( source_buffer != dest_buffer ) AIL_memcpy( dest_buffer, source_buffer, n_samples * ( is_stereo ? 4 : 2 ) ); return; } if (dest_playback_rate != SS.calculated_rate) { FXCalcParams(&SS, dest_playback_rate); } // check if mono or stereo if ( is_stereo ) { // mix into build buffer for( dwIndex = 0; dwIndex < n_samples; dwIndex++ ) { // get input sample (left) fInput = (F32)(S16)LE_SWAP16(source_buffer); // compute first component of filter SS.fXL = fInput - SS.fB1 * SS.fXL1 \ - SS.fB2 * SS.fXL2; // compute second(output) sample fOutL = SS.fA0 * SS.fXL + SS.fA1 * SS.fXL1 \ + SS.fA2 * SS.fXL2; // save sample history SS.fXL2 = SS.fXL1; SS.fXL1 = SS.fXL + _FX_DENORMVAL; fOutL = ( fOutL * fWetOut ) + ( fInput * fDryOut ); // get input sample (right) fInput = (F32)(S16)LE_SWAP16_OFS(source_buffer,2); // compute first component of filter SS.fXR = fInput - SS.fB1 * SS.fXR1 \ - SS.fB2 * SS.fXR2; // compute second(output) sample fOutR = SS.fA0 * SS.fXR + SS.fA1 * SS.fXR1 \ + SS.fA2 * SS.fXR2; // save sample history SS.fXR2 = SS.fXR1; SS.fXR1 = SS.fXR + _FX_DENORMVAL; fOutR = ( fOutR * fWetOut ) + ( fInput * fDryOut ); // write output S32 tmp; WRITE_STEREO_SAMPLE( dest_buffer, fOutL, fOutR, tmp ); source_buffer += 2; } } else { // mix into build buffer for( dwIndex = 0; dwIndex < n_samples; dwIndex++ ) { // get input sample fInput = (F32)(S16)LE_SWAP16(source_buffer); ++source_buffer; // compute first component of filter SS.fXL = fInput - SS.fB1 * SS.fXL1 \ - SS.fB2 * SS.fXL2; // compute second(output) sample fOutL = SS.fA0 * SS.fXL + SS.fA1 * SS.fXL1 \ + SS.fA2 * SS.fXL2; // save sample history SS.fXL2 = SS.fXL1; SS.fXL1 = SS.fXL + _FX_DENORMVAL; fOutL = ( fOutL * fWetOut ) + ( fInput * fDryOut ); // store output S32 tmp; WRITE_MONO_SAMPLE( dest_buffer, fOutL, tmp ); } } AIL_memcpy(SSp, &SS, sizeof(*SSp)); } //############################################################################ //# # //# Set sample preference value, returning previous setting # //# # //############################################################################ static S32 AILCALL FLTSMP_sample_property(HSAMPLESTATE state, HPROPERTY property,void FAR * before_value, void const FAR * new_value, void FAR * after_value) { SAMPLESTATE FAR *SS = (SAMPLESTATE FAR *) state; //HSAMPLE S = SS->sample; // determine preference switch (property) { // // Preferences // case _FX_MIX : if ( before_value ) *(F32 FAR*)before_value = SS->fMix; if ( new_value ) { SS->fMix = *(F32 const FAR*)new_value; // clip to valid range FX_CLIPRANGE( SS->fMix, 0.0F, 1.0F ); } if ( after_value ) *(F32 FAR*)after_value = SS->fMix; return 1; case _FX_PARMEQ_CENTER : if ( before_value ) *(F32 FAR*)before_value = SS->fCenterFreq; if ( new_value ) { SS->fCenterFreq = *(F32 const FAR*)new_value; // clip to valid range FX_CLIPRANGE( SS->fCenterFreq, 20.0F, ((F32) SS->driver->dig->DMA_rate) / 2.0F - 1.0F ); FXCalcParams(SS, SS->driver->dig->DMA_rate); } if ( after_value ) *(F32 FAR*)after_value = SS->fCenterFreq; return 1; case _FX_PARMEQ_Q : if ( before_value ) *(F32 FAR*)before_value = SS->fQ; if ( new_value ) { SS->fQ = *(F32 const FAR*)new_value; // clip to valid range FX_CLIPRANGE( SS->fQ, 0.01F, 1.00F ); FXCalcParams(SS, SS->driver->dig->DMA_rate); } if ( after_value ) *(F32 FAR*)after_value = SS->fQ; return 1; case _FX_PARMEQ_GAIN : if ( before_value ) *(F32 FAR*)before_value = SS->fGain; if ( new_value ) { SS->fGain = *(F32 const FAR*)new_value; // clip to valid range FX_CLIPRANGE( SS->fGain, -18.0F, 18.0F ); FXCalcParams(SS, SS->driver->dig->DMA_rate); } if ( after_value ) *(F32 FAR*)after_value = SS->fGain; return 1; } return 0; } extern "C" S32 ParmEqMain( HPROVIDER provider_handle, U32 up_down ); extern "C" S32 ParmEqMain( HPROVIDER provider_handle, U32 up_down ) { const RIB_INTERFACE_ENTRY FLT1[] = { REG_FN(PROVIDER_property), REG_PR("Name", PROVIDER_NAME, (RIB_DATA_SUBTYPE) (RIB_STRING|RIB_READONLY)), REG_PR("Version", PROVIDER_VERSION, (RIB_DATA_SUBTYPE) (RIB_HEX|RIB_READONLY)), REG_PR("Flags", _FX_PROVIDER_FLAGS, (RIB_DATA_SUBTYPE) (RIB_HEX|RIB_READONLY)), }; const RIB_INTERFACE_ENTRY FLT2[] = { REG_FN(FLT_startup), REG_FN(FLT_error), REG_FN(FLT_shutdown), REG_FN(FLT_open_driver), }; const RIB_INTERFACE_ENTRY FLT3[] = { REG_FN(FLT_close_driver), REG_FN(FLT_premix_process), REG_FN(FLT_postmix_process), }; const RIB_INTERFACE_ENTRY FLTSMP1[] = { REG_FN(FLTSMP_open_sample), REG_FN(FLTSMP_close_sample), REG_FN(FLTSMP_sample_process), REG_FN(FLTSMP_sample_property), }; const RIB_INTERFACE_ENTRY FLTSMP2[] = { REG_PR("ParmEQ Center", _FX_PARMEQ_CENTER , RIB_FLOAT), REG_PR("ParmEQ Q", _FX_PARMEQ_Q, RIB_FLOAT), REG_PR("ParmEQ Gain", _FX_PARMEQ_GAIN , RIB_FLOAT), REG_PR("Mix", _FX_MIX, RIB_FLOAT), }; if (up_down) { RIB_register(provider_handle, "MSS pipeline filter", FLT1); RIB_register(provider_handle, "MSS pipeline filter", FLT2); RIB_register(provider_handle, "MSS pipeline filter", FLT3); RIB_register(provider_handle, "Pipeline filter sample services", FLTSMP1); RIB_register(provider_handle, "Pipeline filter sample services", FLTSMP2); } else { RIB_unregister_all(provider_handle); } return TRUE; }