/** @file g3dmath.h Math util class. @maintainer Morgan McGuire, matrix@graphics3d.com @cite highestBit by Jukka Liimatta @created 2001-06-02 @edited 2006-01-16 Copyright 2000-2006, Morgan McGuire. All rights reserved. */ #ifndef G3DMATH_H #define G3DMATH_H #ifdef _MSC_VER // Disable conditional expression is constant, which occurs incorrectly on inlined functions # pragma warning (push) # pragma warning (disable : 4127) // disable: "C++ exception handler used" # pragma warning (disable : 4530) #endif #include "G3D/platform.h" #include #include #include #include /*These defines enable functionality introduced with the 1999 ISO C **standard. They must be defined before the inclusion of math.h to **engage them. If optimisation is enabled, these functions will be **inlined. With optimisation switched off, you have to link in the **maths library using -lm. */ #define _ISOC9X_SOURCE1 #define _ISOC99_SOURCE1 #define __USE_ISOC9X1 #define __USE_ISOC991 #include #include "G3D/debug.h" #undef min #undef max namespace G3D { #ifdef _MSC_VER /** Win32 implementation of the C99 fast rounding routines. @cite routines are Copyright (C) 2001 Erik de Castro Lopo Permission to use, copy, modify, distribute, and sell this file for any purpose is hereby granted without fee, provided that the above copyright and this permission notice appear in all copies. No representations are made about the suitability of this software for any purpose. It is provided "as is" without express or implied warranty. */ __inline long int lrint (double flt) { int intgr; _asm { fld flt fistp intgr }; return intgr; } __inline long int lrintf(float flt) { int intgr; _asm { fld flt fistp intgr }; return intgr; } #endif const double fuzzyEpsilon = 0.00001; /** Returns a reference to a static double. This value should not be tested against directly, instead G3D::isNan() and G3D::isFinite() will return reliable results. */ inline const double& inf() { // We already have included but // not using it in older gcc for safe compilations #if (__GNUC__ == 2) static const double i = 1.0/sin(0.0); #else // double is a standard type and should have infinity static const double i = std::numeric_limits::infinity(); #endif return i; } /** Returns a reference to a static double. This value should not be tested against directly, instead G3D::isNan() and G3D::isFinite() will return reliable results. */ inline const double& nan() { // We already have included but // not using it in older gcc for safe compilations #if (__GNUC__ == 2) static const double n = 0.0/sin(0.0); #else // double is a standard type and should have quiet NaN static const double n = std::numeric_limits::quiet_NaN(); #endif return n; } /** Returns a reference to a static double. Use instead of G3D_PI. */ inline const double& pi() { static const double p = 3.1415926535898; return p; } /** Returns a reference to a static double. */ inline const double& halfPi() { static const double p = pi() / 2.0; return p; } /** Returns a reference to a static double. */ inline const double& twoPi() { static const double p = pi() * 2.0;; return p; } typedef signed char int8; typedef unsigned char uint8; typedef short int16; typedef unsigned short uint16; typedef int int32; typedef unsigned int uint32; #ifdef _MSC_EXTENSIONS typedef __int64 int64; typedef unsigned __int64 uint64; #elif ! defined(_MSC_VER) typedef int64_t int64; typedef uint64_t uint64; #else typedef long long int64; typedef unsigned long long uint64; #endif typedef unsigned int uint; typedef float float32; typedef double float64; int iAbs(int iValue); int iCeil(double fValue); /** Clamps the value to the range [low, hi] (inclusive) */ int iClamp(int val, int low, int hi); int16 iClamp(int16 val, int16 low, int16 hi); double clamp(double val, double low, double hi); float clamp(float val, float low, float hi); /** Returns a + (b - a) * f; */ inline double lerp(double a, double b, double f) { return a + (b - a) * f; } inline float lerp(float a, float b, float f) { return a + (b - a) * f; } /** Wraps the value to the range [0, hi) (exclusive on the high end). This is like the clock arithmetic produced by % (modulo) except the result is guaranteed to be positive. */ int iWrap(int val, int hi); int iFloor(double fValue); int iSign(int iValue); int iSign(double fValue); inline int iSign(float f) { return iSign((double)f); } /** Fast round to integer using the lrint routine. Typically 6x faster than casting to integer. */ inline int iRound(double fValue) { return lrint(fValue); } /** Fast round to integer using the lrint routine. Typically 6x faster than casting to integer. */ inline int iRound(float f) { return lrintf(f); } /** Returns a random number uniformly at random between low and hi (inclusive). */ int iRandom(int low, int hi); double abs (double fValue); double aCos (double fValue); double aSin (double fValue); double aTan (double fValue); double aTan2 (double fY, double fX); double sign (double fValue); double square (double fValue); /** Returns true if the argument is a finite real number. */ bool isFinite(double x); /** Returns true if the argument is NaN (not a number). You can't use x == nan to test this because all comparisons against nan return false. */ bool isNaN(double x); /** Computes x % 3. */ int iMod3(int x); /** Uniform random number between low and hi, inclusive. [low, hi] */ float uniformRandom(float low = 0.0f, float hi = 1.0f); /** Normally distributed random number. */ float gaussRandom(float mean = 0.0f, float stdev = 1.0f); #if defined(_MSC_VER) && (_MSC_VER <= 1200) /** VC6 lacks std::min and std::max */ inline double min(double x, double y) { return std::_cpp_min(x, y); } /** VC6 lacks std::min and std::max */ inline float min(float x, float y) { return std::_cpp_min(x, y); } /** VC6 lacks std::min and std::max */ inline int64 min(int64 x, int64 y) { return std::_cpp_min(x, y); } /** VC6 lacks std::min and std::max */ inline int min(int x, int y) { return std::_cpp_min(x, y); } /** VC6 lacks std::min and std::max */ inline double max(double x, double y) { return std::_cpp_max(x, y); } /** VC6 lacks std::min and std::max */ inline float max(float x, float y) { return std::_cpp_max(x, y); } /** VC6 lacks std::min and std::max */ inline int64 max(int64 x, int64 y) { return std::_cpp_max(x, y); } /** VC6 lacks std::min and std::max */ inline int max(int x, int y) { return std::_cpp_max(x, y); } #else template inline T min(const T& x, const T& y) { return std::min(x, y); } template inline T max(const T& x, const T& y) { return std::max(x, y); } #endif int iMin(int x, int y); int iMax(int x, int y); double square(double x); double sumSquares(double x, double y); double sumSquares(double x, double y, double z); double distance(double x, double y); double distance(double x, double y, double z); /** Returnes the 0-based index of the highest 1 bit from the left. -1 means the number was 0. @cite Based on code by jukka@liimatta.org */ int highestBit(uint32 x); /** Note that fuzzyEq(a, b) && fuzzyEq(b, c) does not imply fuzzyEq(a, c), although that will be the case on some occasions. */ bool fuzzyEq(double a, double b); /** True if a is definitely not equal to b. Guaranteed false if a == b. Possibly false when a != b.*/ bool fuzzyNe(double a, double b); /** Is a strictly greater than b? (Guaranteed false if a <= b). (Possibly false if a > b) */ bool fuzzyGt(double a, double b); /** Is a near or greater than b? */ bool fuzzyGe(double a, double b); /** Is a strictly less than b? (Guaranteed false if a >= b)*/ bool fuzzyLt(double a, double b); /** Is a near or less than b? */ bool fuzzyLe(double a, double b); /** Computes 1 / sqrt(x). */ inline float rsq(float x) { return 1.0f / sqrtf(x); } /** Uses SSE to implement rsq. @cite Nick nicolas@capens.net */ inline float SSErsq(float x) { #if defined(SSE) && defined(G3D_WIN32) __asm { movss xmm0, x rsqrtss xmm0, xmm0 movss x, xmm0 } return x; #else return 1.0f / sqrt(x); #endif } /** Return the next power of 2 higher than the input If the input is already a power of 2, the output will be the same as the input. */ int ceilPow2(unsigned int in); /** * True if num is a power of two. */ bool isPow2(int num); bool isOdd(int num); bool isEven(int num); double toRadians(double deg); double toDegrees(double rad); /** Returns true if x is not exactly equal to 0.0f. */ inline bool any(float x) { return x != 0; } /** Returns true if x is not exactly equal to 0.0f. */ inline bool all(float x) { return x != 0; } /** v / v (for DirectX/Cg support) */ inline float normalize(float v) { return v / v; } /** a * b (for DirectX/Cg support) */ inline float dot(float a, float b) { return a * b; } /** a * b (for DirectX/Cg support) */ inline float mul(float a, float b) { return a * b; } /** 2^x */ inline double exp2(double x) { return pow(2.0, x); } inline double rsqrt(double x) { return 1.0 / sqrt(x); } /** sin(x)/x */ inline double sinc(double x) { double r = sin(x) / x; if (isNaN(r)) { return 1.0; } else { return r; } } /** Computes a floating point modulo; the result is t wrapped to the range [lo, hi). */ inline float wrap(float t, float lo, float hi) { if ((t >= lo) && (t < hi)) { return t; } debugAssert(hi > lo); float interval = hi - lo; return t - interval * iFloor((t - lo) / interval); } inline double wrap(double t, double lo, double hi) { if ((t >= lo) && (t < hi)) { return t; } debugAssert(hi > lo); double interval = hi - lo; return t - interval * iFloor((t - lo) / interval); } inline double wrap(double t, double hi) { return wrap(t, 0.0, hi); } inline bool isNaN(double x) { bool b1 = (x < 0.0); bool b2 = (x >= 0.0); bool b3 = !(b1 || b2); return b3; } inline bool isFinite(double x) { return ! isNaN(x) && (x < G3D::inf()) && (x > -G3D::inf()); } //---------------------------------------------------------------------------- inline int iAbs (int iValue) { return ( iValue >= 0 ? iValue : -iValue ); } //---------------------------------------------------------------------------- inline int iCeil (double fValue) { return int(::ceil(fValue)); } //---------------------------------------------------------------------------- inline int iClamp(int val, int low, int hi) { debugAssert(low <= hi); if (val <= low) { return low; } else if (val >= hi) { return hi; } else { return val; } } //---------------------------------------------------------------------------- inline int16 iClamp(int16 val, int16 low, int16 hi) { debugAssert(low <= hi); if (val <= low) { return low; } else if (val >= hi) { return hi; } else { return val; } } //---------------------------------------------------------------------------- inline double clamp(double val, double low, double hi) { debugAssert(low <= hi); if (val <= low) { return low; } else if (val >= hi) { return hi; } else { return val; } } inline float clamp(float val, float low, float hi) { debugAssert(low <= hi); if (val <= low) { return low; } else if (val >= hi) { return hi; } else { return val; } } //---------------------------------------------------------------------------- inline int iWrap(int val, int hi) { if (val < 0) { return ((val % hi) + hi) % hi; } else { return val % hi; } } //---------------------------------------------------------------------------- inline int iFloor (double fValue) { return int(::floor(fValue)); } //---------------------------------------------------------------------------- inline int iSign (int iValue) { return ( iValue > 0 ? + 1 : ( iValue < 0 ? -1 : 0 ) ); } inline int iSign (double fValue) { return ( fValue > 0.0 ? + 1 : ( fValue < 0.0 ? -1 : 0 ) ); } //---------------------------------------------------------------------------- inline double abs (double fValue) { return double(::fabs(fValue)); } //---------------------------------------------------------------------------- inline double aCos (double fValue) { if ( -1.0 < fValue ) { if ( fValue < 1.0 ) return double(::acos(fValue)); else return 0.0; } else { return pi(); } } //---------------------------------------------------------------------------- inline double aSin (double fValue) { if ( -1.0 < fValue ) { if ( fValue < 1.0 ) { return double(::asin(fValue)); } else { return -halfPi(); } } else { return halfPi(); } } //---------------------------------------------------------------------------- inline double aTan (double fValue) { return double(::atan(fValue)); } //---------------------------------------------------------------------------- inline double aTan2 (double fY, double fX) { return double(::atan2(fY, fX)); } //---------------------------------------------------------------------------- inline double sign (double fValue) { if (fValue > 0.0) { return 1.0; } if (fValue < 0.0) { return -1.0; } return 0.0; } inline float sign (float fValue) { if (fValue > 0.0f) { return 1.0f; } if (fValue < 0.0f) { return -1.0f; } return 0.0f; } inline float uniformRandom(float low, float hi) { return (hi - low) * float(::rand()) / float(RAND_MAX) + low; } //---------------------------------------------------------------------------- inline double square(double x) { return x * x; } //---------------------------------------------------------------------------- inline double sumSquares(double x, double y) { return x*x + y*y; } //---------------------------------------------------------------------------- inline double sumSquares(double x, double y, double z) { return x*x + y*y + z*z; } //---------------------------------------------------------------------------- inline double distance(double x, double y) { return sqrt(sumSquares(x, y)); } //---------------------------------------------------------------------------- inline double distance(double x, double y, double z) { return sqrt(sumSquares(x, y, z)); } //---------------------------------------------------------------------------- /** @deprecated use G3D::min */ inline int iMin(int x, int y) { return (x >= y) ? y : x; } //---------------------------------------------------------------------------- /** @deprecated use G3D::min */ inline int iMax(int x, int y) { return (x >= y) ? x : y; } //---------------------------------------------------------------------------- inline int ceilPow2(unsigned int in) { in -= 1; in |= in >> 16; in |= in >> 8; in |= in >> 4; in |= in >> 2; in |= in >> 1; return in + 1; } inline bool isPow2(int num) { return ((num & -num) == num); } inline bool isOdd(int num) { return (num & 1) == 1; } inline bool isEven(int num) { return (num & 1) == 0; } inline double toRadians(double deg) { return deg * pi() / 180.0; } inline double toDegrees(double rad) { return rad * 180.0 / pi(); } /** Computes an appropriate epsilon for comparing a and b. */ inline double eps(double a, double b) { // For a and b to be nearly equal, they must have nearly // the same magnitude. This means that we can ignore b // since it either has the same magnitude or the comparison // will fail anyway. (void)b; const double aa = abs(a) + 1; if (aa == inf()) { return fuzzyEpsilon; } else { return fuzzyEpsilon * aa; } } inline bool fuzzyEq(double a, double b) { return (a == b) || (abs(a - b) <= eps(a, b)); } inline bool fuzzyNe(double a, double b) { return ! fuzzyEq(a, b); } inline bool fuzzyGt(double a, double b) { return a > b + eps(a, b); } inline bool fuzzyGe(double a, double b) { return a > b - eps(a, b); } inline bool fuzzyLt(double a, double b) { return a < b - eps(a, b); } inline bool fuzzyLe(double a, double b) { return a < b + eps(a, b); } inline int iMod3(int x) { return x % 3; } } // namespace #ifdef _MSC_VER # pragma warning (pop) #endif #endif