#region Using
using System;
using System.IO;
#endregion
// This is a port of Dmitry Shkarin's PPMd Variant I Revision 1.
// Ported by Michael Bone (mjbone03@yahoo.com.au).
namespace SharpCompress.Compressor.PPMd.I1
{
///
/// The model.
///
internal partial class Model
{
public const uint Signature = 0x84acaf8fU;
public const char Variant = 'I';
public const int MaximumOrder = 16; // maximum allowed model order
private const byte UpperFrequency = 5;
private const byte IntervalBitCount = 7;
private const byte PeriodBitCount = 7;
private const byte TotalBitCount = IntervalBitCount + PeriodBitCount;
private const uint Interval = 1 << IntervalBitCount;
private const uint BinaryScale = 1 << TotalBitCount;
private const uint MaximumFrequency = 124;
private const uint OrderBound = 9;
private See2Context[,] see2Contexts;
private See2Context emptySee2Context;
private PpmContext maximumContext;
private ushort[,] binarySummary = new ushort[25, 64]; // binary SEE-contexts
private byte[] numberStatisticsToBinarySummaryIndex = new byte[256];
private byte[] probabilities = new byte[260];
private byte[] characterMask = new byte[256];
private byte escapeCount;
private int modelOrder;
private int orderFall;
private int initialEscape;
private int initialRunLength;
private int runLength;
private byte previousSuccess;
private byte numberMasked;
private ModelRestorationMethod method;
private PpmState foundState; // found next state transition
private Allocator Allocator;
private Coder Coder;
private PpmContext minimumContext;
private byte numberStatistics;
private PpmState[] decodeStates = new PpmState[256];
private static readonly ushort[] InitialBinaryEscapes = { 0x3CDD, 0x1F3F, 0x59BF, 0x48F3, 0x64A1, 0x5ABC, 0x6632, 0x6051 };
private static readonly byte[] ExponentialEscapes = { 25, 14, 9, 7, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2 };
#region Public Methods
public Model()
{
// Construct the conversion table for number statistics. Initially it will contain the following values.
//
// 0 2 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
// 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
// 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
// 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
// 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
// 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
// 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
// 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
numberStatisticsToBinarySummaryIndex[0] = 2 * 0;
numberStatisticsToBinarySummaryIndex[1] = 2 * 1;
for (int index = 2; index < 11; index++)
numberStatisticsToBinarySummaryIndex[index] = 2 * 2;
for (int index = 11; index < 256; index++)
numberStatisticsToBinarySummaryIndex[index] = 2 * 3;
// Construct the probability table. Initially it will contain the following values (depending on the value of
// the upper frequency).
//
// 00 01 02 03 04 05 06 06 07 07 07 08 08 08 08 09 09 09 09 09 10 10 10 10 10 10 11 11 11 11 11 11
// 11 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 15 15 15 15
// 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
// 18 18 18 18 18 18 18 18 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 20 20 20
// 20 20 20 20 20 20 20 20 20 20 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 22 22
// 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
// 23 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25
// 25 25 25 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
// 26 26 27 27
uint count = 1;
uint step = 1;
uint probability = UpperFrequency;
for (int index = 0; index < UpperFrequency; index++)
probabilities[index] = (byte)index;
for (int index = UpperFrequency; index < 260; index++)
{
probabilities[index] = (byte)probability;
count--;
if (count == 0)
{
step++;
count = step;
probability++;
}
}
// Create the context array.
see2Contexts = new See2Context[24, 32];
for (int index1 = 0; index1 < 24; index1++)
for (int index2 = 0; index2 < 32; index2++)
see2Contexts[index1, index2] = new See2Context();
// Set the signature (identifying the algorithm).
emptySee2Context = new See2Context();
emptySee2Context.Summary = (ushort)(Signature & 0x0000ffff);
emptySee2Context.Shift = (byte)((Signature >> 16) & 0x000000ff);
emptySee2Context.Count = (byte)(Signature >> 24);
}
///
/// Encode (ie. compress) a given source stream, writing the encoded result to the target stream.
///
public void Encode(Stream target, Stream source, PpmdProperties properties)
{
if (target == null)
throw new ArgumentNullException("target");
if (source == null)
throw new ArgumentNullException("source");
EncodeStart(properties);
EncodeBlock(target, source, true);
}
internal Coder EncodeStart(PpmdProperties properties)
{
Allocator = properties.Allocator;
Coder = new Coder();
Coder.RangeEncoderInitialize();
StartModel(properties.ModelOrder, properties.ModelRestorationMethod);
return Coder;
}
internal void EncodeBlock(Stream target, Stream source, bool final)
{
while (true)
{
minimumContext = maximumContext;
numberStatistics = minimumContext.NumberStatistics;
int c = source.ReadByte();
if (c < 0 && !final)
return;
if (numberStatistics != 0)
{
EncodeSymbol1(c, minimumContext);
Coder.RangeEncodeSymbol();
}
else
{
EncodeBinarySymbol(c, minimumContext);
Coder.RangeShiftEncodeSymbol(TotalBitCount);
}
while (foundState == PpmState.Zero)
{
Coder.RangeEncoderNormalize(target);
do
{
orderFall++;
minimumContext = minimumContext.Suffix;
if (minimumContext == PpmContext.Zero)
goto StopEncoding;
} while (minimumContext.NumberStatistics == numberMasked);
EncodeSymbol2(c, minimumContext);
Coder.RangeEncodeSymbol();
}
if (orderFall == 0 && (Pointer)foundState.Successor >= Allocator.BaseUnit)
{
maximumContext = foundState.Successor;
}
else
{
UpdateModel(minimumContext);
if (escapeCount == 0)
ClearMask();
}
Coder.RangeEncoderNormalize(target);
}
StopEncoding:
Coder.RangeEncoderFlush(target);
}
///
/// Dencode (ie. decompress) a given source stream, writing the decoded result to the target stream.
///
public void Decode(Stream target, Stream source, PpmdProperties properties)
{
if (target == null)
throw new ArgumentNullException("target");
if (source == null)
throw new ArgumentNullException("source");
DecodeStart(source, properties);
byte[] buffer = new byte[65536];
int read;
while ((read = DecodeBlock(source, buffer, 0, buffer.Length)) != 0)
target.Write(buffer, 0, read);
return;
}
internal Coder DecodeStart(Stream source, PpmdProperties properties)
{
Allocator = properties.Allocator;
Coder = new Coder();
Coder.RangeDecoderInitialize(source);
StartModel(properties.ModelOrder, properties.ModelRestorationMethod);
minimumContext = maximumContext;
numberStatistics = minimumContext.NumberStatistics;
return Coder;
}
internal int DecodeBlock(Stream source, byte[] buffer, int offset, int count)
{
if (minimumContext == PpmContext.Zero)
return 0;
int total = 0;
while (total < count)
{
if (numberStatistics != 0)
DecodeSymbol1(minimumContext);
else
DecodeBinarySymbol(minimumContext);
Coder.RangeRemoveSubrange();
while (foundState == PpmState.Zero)
{
Coder.RangeDecoderNormalize(source);
do
{
orderFall++;
minimumContext = minimumContext.Suffix;
if (minimumContext == PpmContext.Zero)
goto StopDecoding;
} while (minimumContext.NumberStatistics == numberMasked);
DecodeSymbol2(minimumContext);
Coder.RangeRemoveSubrange();
}
buffer[offset] = foundState.Symbol;
offset++;
total++;
if (orderFall == 0 && (Pointer)foundState.Successor >= Allocator.BaseUnit)
{
maximumContext = foundState.Successor;
}
else
{
UpdateModel(minimumContext);
if (escapeCount == 0)
ClearMask();
}
minimumContext = maximumContext;
numberStatistics = minimumContext.NumberStatistics;
Coder.RangeDecoderNormalize(source);
}
StopDecoding:
return total;
}
#endregion
#region Private Methods
///
/// Initialise the model (unless the model order is set to 1 in which case the model should be cleared so that
/// the statistics are carried over, allowing "solid" mode compression).
///
private void StartModel(int modelOrder, ModelRestorationMethod modelRestorationMethod)
{
Array.Clear(characterMask, 0, characterMask.Length);
escapeCount = 1;
// Compress in "solid" mode if the model order value is set to 1 (this will examine the current PPM context
// structures to determine the value of orderFall).
if (modelOrder < 2)
{
orderFall = this.modelOrder;
for (PpmContext context = maximumContext; context.Suffix != PpmContext.Zero; context = context.Suffix)
orderFall--;
return;
}
this.modelOrder = modelOrder;
orderFall = modelOrder;
method = modelRestorationMethod;
Allocator.Initialize();
initialRunLength = -((modelOrder < 12) ? modelOrder : 12) - 1;
runLength = initialRunLength;
// Allocate the context structure.
maximumContext = Allocator.AllocateContext();
maximumContext.Suffix = PpmContext.Zero;
maximumContext.NumberStatistics = 255;
maximumContext.SummaryFrequency = (ushort)(maximumContext.NumberStatistics + 2);
maximumContext.Statistics = Allocator.AllocateUnits(256 / 2); // allocates enough space for 256 PPM states (each is 6 bytes)
previousSuccess = 0;
for (int index = 0; index < 256; index++)
{
PpmState state = maximumContext.Statistics[index];
state.Symbol = (byte)index;
state.Frequency = 1;
state.Successor = PpmContext.Zero;
}
uint probability = 0;
for (int index1 = 0; probability < 25; probability++)
{
while (probabilities[index1] == probability)
index1++;
for (int index2 = 0; index2 < 8; index2++)
binarySummary[probability, index2] = (ushort)(BinaryScale - InitialBinaryEscapes[index2] / (index1 + 1));
for (int index2 = 8; index2 < 64; index2 += 8)
for (int index3 = 0; index3 < 8; index3++)
binarySummary[probability, index2 + index3] = binarySummary[probability, index3];
}
probability = 0;
for (uint index1 = 0; probability < 24; probability++)
{
while (probabilities[index1 + 3] == probability + 3)
index1++;
for (int index2 = 0; index2 < 32; index2++)
see2Contexts[probability, index2].Initialize(2 * index1 + 5);
}
}
private void UpdateModel(PpmContext minimumContext)
{
PpmState state = PpmState.Zero;
PpmContext Successor;
PpmContext currentContext = maximumContext;
uint numberStatistics;
uint ns1;
uint cf;
uint sf;
uint s0;
uint foundStateFrequency = foundState.Frequency;
byte foundStateSymbol = foundState.Symbol;
byte symbol;
byte flag;
PpmContext foundStateSuccessor = foundState.Successor;
PpmContext context = minimumContext.Suffix;
if ((foundStateFrequency < MaximumFrequency / 4) && (context != PpmContext.Zero))
{
if (context.NumberStatistics != 0)
{
state = context.Statistics;
if (state.Symbol != foundStateSymbol)
{
do
{
symbol = state[1].Symbol;
state++;
} while (symbol != foundStateSymbol);
if (state[0].Frequency >= state[-1].Frequency)
{
Swap(state[0], state[-1]);
state--;
}
}
cf = (uint)((state.Frequency < MaximumFrequency - 9) ? 2 : 0);
state.Frequency += (byte)cf;
context.SummaryFrequency += (byte)cf;
}
else
{
state = context.FirstState;
state.Frequency += (byte)((state.Frequency < 32) ? 1 : 0);
}
}
if (orderFall == 0 && foundStateSuccessor != PpmContext.Zero)
{
foundState.Successor = CreateSuccessors(true, state, minimumContext);
if (foundState.Successor == PpmContext.Zero)
goto RestartModel;
maximumContext = foundState.Successor;
return;
}
Allocator.Text[0] = foundStateSymbol;
Allocator.Text++;
Successor = Allocator.Text;
if (Allocator.Text >= Allocator.BaseUnit)
goto RestartModel;
if (foundStateSuccessor != PpmContext.Zero)
{
if (foundStateSuccessor < Allocator.BaseUnit)
foundStateSuccessor = CreateSuccessors(false, state, minimumContext);
}
else
{
foundStateSuccessor = ReduceOrder(state, minimumContext);
}
if (foundStateSuccessor == PpmContext.Zero)
goto RestartModel;
if (--orderFall == 0)
{
Successor = foundStateSuccessor;
Allocator.Text -= (maximumContext != minimumContext) ? 1 : 0;
}
else if (method > ModelRestorationMethod.Freeze)
{
Successor = foundStateSuccessor;
Allocator.Text = Allocator.Heap;
orderFall = 0;
}
numberStatistics = minimumContext.NumberStatistics;
s0 = minimumContext.SummaryFrequency - numberStatistics - foundStateFrequency;
flag = (byte)((foundStateSymbol >= 0x40) ? 0x08 : 0x00);
for (; currentContext != minimumContext; currentContext = currentContext.Suffix)
{
ns1 = currentContext.NumberStatistics;
if (ns1 != 0)
{
if ((ns1 & 1) != 0)
{
state = Allocator.ExpandUnits(currentContext.Statistics, (ns1 + 1) >> 1);
if (state == PpmState.Zero)
goto RestartModel;
currentContext.Statistics = state;
}
currentContext.SummaryFrequency += (ushort)((3 * ns1 + 1 < numberStatistics) ? 1 : 0);
}
else
{
state = Allocator.AllocateUnits(1);
if (state == PpmState.Zero)
goto RestartModel;
Copy(state, currentContext.FirstState);
currentContext.Statistics = state;
if (state.Frequency < MaximumFrequency / 4 - 1)
state.Frequency += state.Frequency;
else
state.Frequency = (byte)(MaximumFrequency - 4);
currentContext.SummaryFrequency = (ushort)(state.Frequency + initialEscape + ((numberStatistics > 2) ? 1 : 0));
}
cf = (uint)(2 * foundStateFrequency * (currentContext.SummaryFrequency + 6));
sf = s0 + currentContext.SummaryFrequency;
if (cf < 6 * sf)
{
cf = (uint)(1 + ((cf > sf) ? 1 : 0) + ((cf >= 4 * sf) ? 1 : 0));
currentContext.SummaryFrequency += 4;
}
else
{
cf = (uint)(4 + ((cf > 9 * sf) ? 1 : 0) + ((cf > 12 * sf) ? 1 : 0) + ((cf > 15 * sf) ? 1 : 0));
currentContext.SummaryFrequency += (ushort)cf;
}
state = currentContext.Statistics + (++currentContext.NumberStatistics);
state.Successor = Successor;
state.Symbol = foundStateSymbol;
state.Frequency = (byte)cf;
currentContext.Flags |= flag;
}
maximumContext = foundStateSuccessor;
return;
RestartModel:
RestoreModel(currentContext, minimumContext, foundStateSuccessor);
}
private PpmContext CreateSuccessors(bool skip, PpmState state, PpmContext context)
{
PpmContext upBranch = foundState.Successor;
PpmState[] states = new PpmState[MaximumOrder];
uint stateIndex = 0;
byte symbol = foundState.Symbol;
if (!skip)
{
states[stateIndex++] = foundState;
if (context.Suffix == PpmContext.Zero)
goto NoLoop;
}
bool gotoLoopEntry = false;
if (state != PpmState.Zero)
{
context = context.Suffix;
gotoLoopEntry = true;
}
do
{
if (gotoLoopEntry)
{
gotoLoopEntry = false;
goto LoopEntry;
}
context = context.Suffix;
if (context.NumberStatistics != 0)
{
byte temporary;
state = context.Statistics;
if (state.Symbol != symbol)
{
do
{
temporary = state[1].Symbol;
state++;
} while (temporary != symbol);
}
temporary = (byte)((state.Frequency < MaximumFrequency - 9) ? 1 : 0);
state.Frequency += temporary;
context.SummaryFrequency += temporary;
}
else
{
state = context.FirstState;
state.Frequency += (byte)(((context.Suffix.NumberStatistics == 0) ? 1 : 0) & ((state.Frequency < 24) ? 1 : 0));
}
LoopEntry:
if (state.Successor != upBranch)
{
context = state.Successor;
break;
}
states[stateIndex++] = state;
} while (context.Suffix != PpmContext.Zero);
NoLoop:
if (stateIndex == 0)
return context;
byte localNumberStatistics = 0;
byte localFlags = (byte)((symbol >= 0x40) ? 0x10 : 0x00);
symbol = upBranch.NumberStatistics;
byte localSymbol = symbol;
byte localFrequency;
PpmContext localSuccessor = ((Pointer)upBranch) + 1;
localFlags |= (byte)((symbol >= 0x40) ? 0x08 : 0x00);
if (context.NumberStatistics != 0)
{
state = context.Statistics;
if (state.Symbol != symbol)
{
byte temporary;
do
{
temporary = state[1].Symbol;
state++;
} while (temporary != symbol);
}
uint cf = (uint)(state.Frequency - 1);
uint s0 = (uint)(context.SummaryFrequency - context.NumberStatistics - cf);
localFrequency = (byte)(1 + ((2 * cf <= s0) ? (uint)((5 * cf > s0) ? 1 : 0) : ((cf + 2 * s0 - 3) / s0)));
}
else
{
localFrequency = context.FirstStateFrequency;
}
do
{
PpmContext currentContext = Allocator.AllocateContext();
if (currentContext == PpmContext.Zero)
return PpmContext.Zero;
currentContext.NumberStatistics = localNumberStatistics;
currentContext.Flags = localFlags;
currentContext.FirstStateSymbol = localSymbol;
currentContext.FirstStateFrequency = localFrequency;
currentContext.FirstStateSuccessor = localSuccessor;
currentContext.Suffix = context;
context = currentContext;
states[--stateIndex].Successor = context;
} while (stateIndex != 0);
return context;
}
private PpmContext ReduceOrder(PpmState state, PpmContext context)
{
PpmState currentState;
PpmState[] states = new PpmState[MaximumOrder];
uint stateIndex = 0;
PpmContext currentContext = context;
PpmContext UpBranch = Allocator.Text;
byte temporary;
byte symbol = foundState.Symbol;
states[stateIndex++] = foundState;
foundState.Successor = UpBranch;
orderFall++;
bool gotoLoopEntry = false;
if (state != PpmState.Zero)
{
context = context.Suffix;
gotoLoopEntry = true;
}
while (true)
{
if (gotoLoopEntry)
{
gotoLoopEntry = false;
goto LoopEntry;
}
if (context.Suffix == PpmContext.Zero)
{
if (method > ModelRestorationMethod.Freeze)
{
do
{
states[--stateIndex].Successor = context;
} while (stateIndex != 0);
Allocator.Text = Allocator.Heap + 1;
orderFall = 1;
}
return context;
}
context = context.Suffix;
if (context.NumberStatistics != 0)
{
state = context.Statistics;
if (state.Symbol != symbol)
{
do
{
temporary = state[1].Symbol;
state++;
} while (temporary != symbol);
}
temporary = (byte)((state.Frequency < MaximumFrequency - 9) ? 2 : 0);
state.Frequency += temporary;
context.SummaryFrequency += temporary;
}
else
{
state = context.FirstState;
state.Frequency += (byte)((state.Frequency < 32) ? 1 : 0);
}
LoopEntry:
if (state.Successor != PpmContext.Zero)
break;
states[stateIndex++] = state;
state.Successor = UpBranch;
orderFall++;
}
if (method > ModelRestorationMethod.Freeze)
{
context = state.Successor;
do
{
states[--stateIndex].Successor = context;
} while (stateIndex != 0);
Allocator.Text = Allocator.Heap + 1;
orderFall = 1;
return context;
}
else if (state.Successor <= UpBranch)
{
currentState = foundState;
foundState = state;
state.Successor = CreateSuccessors(false, PpmState.Zero, context);
foundState = currentState;
}
if (orderFall == 1 && currentContext == maximumContext)
{
foundState.Successor = state.Successor;
Allocator.Text--;
}
return state.Successor;
}
private void RestoreModel(PpmContext context, PpmContext minimumContext, PpmContext foundStateSuccessor)
{
PpmContext currentContext;
Allocator.Text = Allocator.Heap;
for (currentContext = maximumContext; currentContext != context; currentContext = currentContext.Suffix)
{
if (--currentContext.NumberStatistics == 0)
{
currentContext.Flags = (byte)((currentContext.Flags & 0x10) + ((currentContext.Statistics.Symbol >= 0x40) ? 0x08 : 0x00));
PpmState state = currentContext.Statistics;
Copy(currentContext.FirstState, state);
Allocator.SpecialFreeUnits(state);
currentContext.FirstStateFrequency = (byte)((currentContext.FirstStateFrequency + 11) >> 3);
}
else
{
Refresh((uint)((currentContext.NumberStatistics + 3) >> 1), false, currentContext);
}
}
for (; currentContext != minimumContext; currentContext = currentContext.Suffix)
{
if (currentContext.NumberStatistics == 0)
currentContext.FirstStateFrequency -= (byte)(currentContext.FirstStateFrequency >> 1);
else if ((currentContext.SummaryFrequency += 4) > 128 + 4 * currentContext.NumberStatistics)
Refresh((uint)((currentContext.NumberStatistics + 2) >> 1), true, currentContext);
}
if (method > ModelRestorationMethod.Freeze)
{
maximumContext = foundStateSuccessor;
Allocator.GlueCount += (uint)(((Allocator.MemoryNodes[1].Stamp & 1) == 0) ? 1 : 0);
}
else if (method == ModelRestorationMethod.Freeze)
{
while (maximumContext.Suffix != PpmContext.Zero)
maximumContext = maximumContext.Suffix;
RemoveBinaryContexts(0, maximumContext);
method = (ModelRestorationMethod)(method + 1);
Allocator.GlueCount = 0;
orderFall = modelOrder;
}
else if (method == ModelRestorationMethod.Restart || Allocator.GetMemoryUsed() < (Allocator.AllocatorSize >> 1))
{
StartModel(modelOrder, method);
escapeCount = 0;
}
else
{
while (maximumContext.Suffix != PpmContext.Zero)
maximumContext = maximumContext.Suffix;
do
{
CutOff(0, maximumContext);
Allocator.ExpandText();
} while (Allocator.GetMemoryUsed() > 3 * (Allocator.AllocatorSize >> 2));
Allocator.GlueCount = 0;
orderFall = modelOrder;
}
}
private static void Swap(PpmState state1, PpmState state2)
{
byte swapSymbol = state1.Symbol;
byte swapFrequency = state1.Frequency;
PpmContext swapSuccessor = state1.Successor;
state1.Symbol = state2.Symbol;
state1.Frequency = state2.Frequency;
state1.Successor = state2.Successor;
state2.Symbol = swapSymbol;
state2.Frequency = swapFrequency;
state2.Successor = swapSuccessor;
}
private static void Copy(PpmState state1, PpmState state2)
{
state1.Symbol = state2.Symbol;
state1.Frequency = state2.Frequency;
state1.Successor = state2.Successor;
}
private static int Mean(int sum, int shift, int round)
{
return (sum + (1 << (shift - round))) >> shift;
}
private void ClearMask()
{
escapeCount = 1;
Array.Clear(characterMask, 0, characterMask.Length);
}
#endregion
}
}